Nucleation sequence on the cation exchange process between Y0.95Eu0.05PO4 and CePO4 nanorods.
نویسندگان
چکیده
Nanorods of Y0.95Eu0.05PO4@CePO4 (Y0.95Eu0.05PO4 phase was nucleated first and then a CePO4 phase was nucleated) and [email protected] (CePO4 phase was nucleated first and then Y0.95Eu0.05PO4 phase was nucleated) were prepared at a relatively low temperature of 140 °C in ethylene glycol medium. Based on XRD, TEM and Raman studies it has been inferred that Y0.95Eu0.05PO4@CePO4 sample consists of a mixture of bigger (length around 800-1000 nm and width around of 80-100 nm) and smaller (length around 70-100 nm and width around 10-20 nm) nanorods, having monoclinic CePO4 and tetragonal YPO4 structure, whereas [email protected] sample consists of mainly small nanorods having a single phase CePO4 structure. From the detailed luminescence studies it has been established that there exists significant incorporation of Y3+/Eu3+ ions in the CePO4 phase in [email protected] sample. This has been attributed to the cation exchange taking place between Ce3+ ions in CePO4 host and Eu3+ and Y3+ ions in solution during the synthesis stage. Unlike this, such an exchange is not possible for Y0.95Eu0.05PO4@CePO4 sample synthesized under identical conditions due to the higher solubility product (Ksp) value of YPO4 compared to CePO4. Incorporation of Eu3+ in the CePO4 lattice of [email protected] sample is confirmed by the significant reduction in the lifetime of 5D0 level of Eu3+ and the luminescence intensity from Eu3+, arising due to the electron transfer between the Ce3+/Ce4+ and Eu3+/Eu2+ species. These results are further supported by the non-radiative decay rates and quantum yields calculated from the emission spectrum.
منابع مشابه
Dimethylamine Controlled Sol-Gel Process to Grow ZnO Nanorods
ZnO nanorods were prepared using dimethylamine (DMA) controlled Sol-Gel process. Dimethylamine was added as an additive to control the sol-gel process for growing ZnO nanorods. DMA would exhibit stabilizing effect, promote dissolution of precursor and control the rate of sol-gel reactions because of its basic nature and significant miscibility. The Structural and microstructural properties of t...
متن کاملBiofunctionalization of Gold Nanorods: A Comparative Study on Conjugation Methods for Fabrication of Nanobiosensors
Gold Nanorods have promised variety of applications in biomedicine and biosensing. As a fruitful candidate for early detection and imaging, these plasmonic nanoparticles have been utilized for diagnostic applications of interest. However, prior to design and fabricate SPR-based nanobiosensors, the type and nature of conjugation with biomolecules would be of utmost importance. Herein, four strat...
متن کاملCation Exchange Between Piemontite and Garnet in Piemontite-Quartz Schists from Asemi-Gawa Area of Central Shikoku, Sanbagawa Metamorphic Belt, Japan
In the Asemi-gawa area of intermediate high-pressure and low-temperature Sanbagawa metamorphic belt in central Shikoku, Japan, piemontite-quartz schists are common in which cation exchange between piemontite and garnet has been studied. Piemontite in contact with garnet usually contains two zones in which core is enriched in Mn3+ and surrounded by a rim rich in Fe3+. Garnet is Ca-Fe-bearing spe...
متن کاملExciton Dynamics in CdS-Ag2S Nanorods with Tunable Composition Probed by Ultrafast Transient Absorption Spectroscopy
Electron relaxation dynamics in CdS-Ag2S nanorods have been measured as a function of the relative fraction of the two semiconductors, which can be tuned via cation exchange between Cd2+ and Ag+. The transient bleach of the first excitonic state of the CdS nanorods is characterized by a biexponential decay corresponding to fast relaxation of the excited electrons into trap states. This signal c...
متن کاملAssessment of spatial variability of cation exchange capacity with kriging and cokriging
Cation exchange capacity (CEC) is one of the most important soil attributes which control some basic properties of soil such as acidity, water and nutrient retaining capacity. However, the measurement of cation exchange capacity in large areas is time consuming and requires high expenses. One way to save time and expenses is to use simple soil covariates and geostatistical methods in mapping CE...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanoscale
دوره 2 12 شماره
صفحات -
تاریخ انتشار 2010